COMMITTENTE:

RETE FERROVIARIA ITALIANA S.P.A. DIREZIONE INVESTIMENTI

SOGGETTO TECNICO:

RFI — DIREZIONE TERRITORIALE PRODUZIONE DI FIRENZE S.O. INGEGNERIA

PROGETTAZIONE:

MANDATARIA

PROGETTO DEFINITIVO

LINEA PISTOIA - LUCCA - VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA - LUCCA - PISA S.R. TRATTA PESCIA - LUCCA

11 - OPERE D'ARTE Sottovia al km 40+907 (sostitutivo del PL al km 41+099)

Relazione tecnica e di calcolo

SCALA	-
	Г

Foglio 1 di 1

PROGETTO/ANNO	SUTTOPR.	LIVELLO	NOME DOC.	PRUGR.UP.	FASE FUNZ.	NUMERAZ.
1 3 4 6 P O	S 1 1	PD	TGSP	2 8	0 1	E 0 0 1

Revis.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato	Data
А	Prima Emissione	G. Tanzi	18/09/2018						

POSIZIONE ARCHIVIO	LINEA L 5 4 2	SEI L (DE TECN.	6	TB00	C. NI	JMERAZ.
	Verificato e tras	messo	Data	Convalidato	Data	Archiviato	Data

1346-PO-S11-PD-TGSP-28-01-E001.dwg	

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA MONTECATINI TERME – LUCCA

Sottovia ferroviario – km 40+907

1346-PO-S11-PD-TGSP-28-01-E001

INDICE

1. IN	NTRODUZIONE	2
2. N	ORMATIVA E DOCUMENTI DI RIFERIMENTO	4
2.1.	Normativa di riferimento	4
3. M	ATERIALI	5
3.1.	Materiali impalcato	5
4. A	NALISI DEI CARICHI IMPALCATO	7
4.1.	Analisi dei carichi impalcato	7
5. C	OMBINAZIONI DEI CARICHI E CRITERI DI VERIFICA	14
5.1.	Combinazioni delle azioni	14
6. P	ROGETTO DELL' IMPALCATO	19
6.1.	Azione sismica	20
6.2.	Modello di calcolo	21
6.3.	Sollecitazioni di progetto	23
6.4.	Verifica degli elementi costituenti l'impalcato	26
6.5.	Armature	27
6.6.	Resoconto Verifiche	29
7 IN	SCIDENZA ARMATURE	30

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA MONTECATINI TERME – LUCCA

Sottovia ferroviario – km 40+907

1346-PO-S11-PD-TGSP-28-01-E001

1. INTRODUZIONE

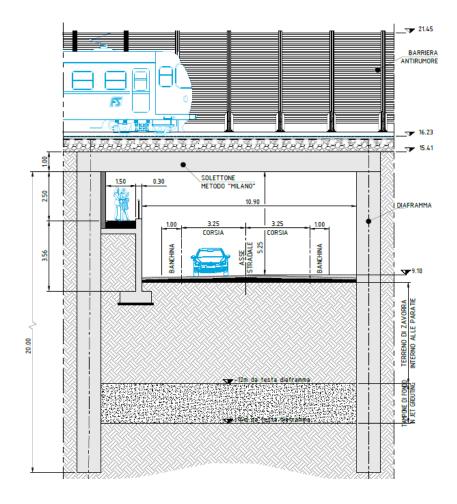
La presente relazione di calcolo strutturale è relativa alla progettazione della soletta superiore di chiusura del sottovia ferroviario da realizzare nel comune di Capannori (LU) alla progressiva km 40+907. L'intervento è conseguente al raddoppio della linea ferroviaria compresa tra le stazioni di Pescia e Lucca, che prevede il riassetto della viabilità di Via di Tiglio in seguito alla soppressione dei passaggi a livello ai km 40+753 e 41+099, rispettivamente di Via dei Barsocchini e Via di Tiglio.

Figura 1-1 Vista satellitare dei P.L. da sopprimere e del nuovo sottovia al km 40+907

Il sottovia è realizzato con tecnica top-down attraverso:

- costruzione di paratie a diaframmi continui ai lati del tracciato dell'opera;
- costruzione di un tampone di fondo fra i due diaframmi, con la tecnica del jet-grouting;
- scavo e livellamento superficiale del piano campagna fino alla quota d'intradosso della soletta superiore di chiusura;
- armatura e getto della soletta superiore di chiusura;
- ripristino della circolazione ferroviaria;
- scavo del sottovia all'interno dei due diaframmi.

La soletta superiore ha luce 1,00 metro ed è caratterizzata da una luce di calcolo fra gli assi dei diaframmi pari a m 13,75 ed una luce netta pari a m 12,75. Si riporta la sezione del sottovia.



LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA MONTECATINI TERME – LUCCA

Sottovia ferroviario – km 40+907

1346-PO-S11-PD-TGSP-28-01-E001

Mandanti

Pag.

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA MONTECATINI TERME – LUCCA

Sottovia ferroviario – km 40+907

1346-PO-S11-PD-TGSP-28-01-E001

2. NORMATIVA E DOCUMENTI DI RIFERIMENTO

2.1. Normativa di riferimento

La normativa di riferimento per la progettazione in oggetto è la seguente: Norme tecniche per le costruzioni

• D.M. 17/01/2018: Norme tecniche per le costruzioni (d'ora in avanti definite NTC18);

Specifiche tecniche ed istruzioni RFI

•	RFI DTC SI MA IFS 001 B	Manuale di progettazione delle opere civili - PARTE I -
		DISPOSIZIONI GENERALI
•	RFI DTC SI PS MA IFS 001 A	Manuale di progettazione delle opere civili - PARTE II -
		SEZIONE 1 – AMBIENTE E GEOLOGIA
•	RFI DTC SI PS MA IFS 001 A	Manuale di progettazione delle opere civili - PARTE II -
		SEZIONE 2 – PONTI E STRUTTURE
•	RFI DTC SI CS MA IFS 001 A	Manuale di progettazione delle opere civili - PARTE II -
		SEZIONE 3 – CORPO STRADALE
•	RFI DTC SI PS MA IFS 001 A	Manuale di progettazione delle opere civili - PARTE II -
		SEZIONE 5 – PRESCRIZIONI PER I MARCIAPIEDI
		E LE PENSILINE

- RFI DTC SICS SP IFS 001 B del 24-12-15 Capitolato appalto OOCC
- RFI DTC INC PO SP IFS 001 A Specifica per la Progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario
- RFI DTC INC PO SP IFS 004 A Specifica per la Progettazione e l'esecuzione di impalcati ferroviari a travi in ferro a doppio "T" incorporate nel calcestruzzo

Eurocodici:

- UNI EN 1990: Eurocodice Criteri generali di progettazione strutturale.
- UNI EN 1991: Eurocodice 1 Azioni sulle strutture.
- UNI EN 1992: Eurocodice 2 Progettazione delle strutture di calcestruzzo.
- UNI EN 1993: Eurocodice 3 Progettazione delle strutture di acciaio.
- UNI EN 1993: Eurocodice 4 Progettazione delle strutture composte acciaio-calcestruzzo.
- UNI EN 1997: Eurocodice 7 Progettazione geotecnica.
- UNI EN 1998: Eurocodice 8 Progettazione delle strutture per la resistenza sismica.

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA MONTECATINI TERME – LUCCA

Sottovia ferroviario – km 40+907 1346-PO-S11-PD-TGSP-28-01-E001

3. MATERIALI

3.1. Materiali impalcato

I requisiti minimi delle miscele di calcestruzzo sono individuati in tabella 6.5.5.1 del Capitolato d'Appalto RFI. Per il copriferro di progetto, individuato a partire dalla classe di esposizione ambientale, si fa riferimento alla tabella del par. 2.5.2.2.3.2 del Manuale di Progettazione RFI

Tabella 6.5.5.1 – Requisiti minimi delle miscele

	I	П	III	IV	v v	VI	VII	VIII
Tip calces	o di truzzo	Campi di impiego	Classe di esposizione ambientale (UNI EN 206) ¹	Rapporto a/c max	Classe di resistenza minima [C(fck/Rck) _{min}]	Classe di consistenza	Tipo di cemento	Classe di resistenza di calcolo (MPa)
	1	Impalcati in c.a. ordinari Solette in c.a. in elevazione	XC3	0.55	C30/37	S4,S5	СЕМ І,П,ПІ,IV,V	Rck
C**	2	Pile e spalle Baggioli e pulvini Strutture in c.a. in elevazione	XC3	0.55	C30/37	S3,S4	CEM I,II,III,IV,V	Rck
	1	Pali (di paratie o opere di sostegno), diaframmi e relativi cordoli di collegamento gettati in opera	XC2	0.60	C25/30	84, 85	CEM III,IV,V	30
H**	2	Pali di fondazione gettati in opera	XC2	0.60	C25/30	\$4, \$5	CEM III,IV,V	30
	3	Pali di fondazione prefabbricati	[XA1]	0.50	C32/40	\$4, \$5	CEM III,IV,V	Rck
ı		Magrone di riempimento o livellamento	X0	-	C12/15	-	CEM I,II,III,IV,V	Rck

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA MONTECATINI TERME – LUCCA

Sottovia ferroviario – km 40+907

1346-PO-S11-PD-TGSP-28-01-E001

Elemento strutturale	Categoria di esposizione minima	Copriferro minimo
Pali (di paratie o opere di sostegno), diaframmi e relativi cordoli di collegamento gettati in opera	XC2	60mm
Pali/diaframmi di fondazione gettati in opera	XC2	60mm
Pali di fondazione prefabbricati	XA1	60mm
Solettoni di fondazione, fondazioni armate	XC2	40mm
Fondazioni non armate (pozzi, sottoplinti, ecc.)	XC2	40mm
Cunette canalette e cordoli	XC1	40mm
Opere in elevazione in viste (pile, spalle, baggioli)	XC3	40mm
Opere in elevazione con superfici interrate o non ispezionabili	XC3	40mm
Solette estradosso	XC3	35mm
Solette intradosso (getto in opera)		35mm
Impalcati armatura ordinaria	XC3	40mm
Impalcati in c.a.p cavi pre-tesi	XC3	Max (3Ø _{TR} ; 50mm)
Impalcati in c.a.p. cavi post-tesi	XC3	Max (Ø _G ; 60mm)
Predalles prefabbricate con funzioni strutturali	XC3	25mm
Predalles senza funzioni strutturali	XA1	Max (Ø _{inf} ; 20mm)

tabella 2.5.2.2.3.2.-1

In accordo alla tabella il calcestruzzo impiegato per l'impalcato è il seguente:

Calcestruzzo impalcato:

TipoC 30/37Classe di esposizioneXC3Copriferro40 mmRapporto a/c massimo0.55Classe di consistenzaS3, S4Resistenza cubica caratteristica a compressione $R_{ck} \ge 40 \text{ N/mm}^2$ Resistenza caratteristica a trazione $f_{ctk} \ge 2.169 \text{ N/mm}^2$

Modulo elastico $E_{cm} = 33642.8 \text{ N/mm}^2$ Peso dell'unità di volume $\gamma_{cls} = 25 \text{ kN/m}^3$

• Acciaio in barre da c.a. e reti elettrosaldate:

Acciaio in barre da c.a. e ren elettrosaidate.

 $\begin{tabular}{llll} Tipo & B450C \\ Resistenza caratteristica di snervamento & F_{yk} \ge 450 \ MPa \\ Resistenza caratteristica a rottura & f_{tk} \ge 540 \ N/mm^2 \\ Modulo elastico & E_s = 206000 \ N/mm^2 \\ Peso dell'unità di volume & \gamma_{acc} = 78.5 \ kN/m^3 \\ \end{tabular}$

Mandataria

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA MONTECATINI TERME – LUCCA

Sottovia ferroviario – km 40+907

1346-PO-S11-PD-TGSP-28-01-E001

4. ANALISI DEI CARICHI IMPALCATO

4.1. Analisi dei carichi impalcato

L'impalcato è in calcestruzzo dello spessore di 100cm

	ANALISI DEI CARICHI		
	LUNGHEZZA IMPALCATO sempre parallelo all'asse ferroviario	L	13,75 m
	LARGHEZZA IMPALCATO	В	30,00 m
	sempre ortogonale all'asse ferroviario SPESSORE IMPALCATO	S	1,00 m
	Larghezza media della spalla di appoggio Larghezza di influenza dell'asse ferroviario Altezza Ballast Altezza piano del ferro-estradosso soletta Altezza della barriera ferroviaria Raggio della curva (per valutare le azioni centrifughe) Pressione del vento (secondo NTC 18) Peso della barriera (sviluppo superficiale) Densità calcestruzzo	S _{spalla} Lf Hb Hb-s Hbar r Pv Pbar 7 cls	1,00 m 4,00 m 0,80 m 1,00 m 5,00 m 500,00 m 1,45 kN/mq 4,00 kN/mq 25,00 kN/mc
	Densità ballast	γ ball	21,00 kN/mc
Distribuzi 4,00 m	one dei carichi sull'impalcato 3,55 m	22,45 m	
superfici e di influenz a marciapi ede		superficie di influenza area libera	↑ y 13,75 m

30,00 m

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA MONTECATINI TERME – LUCCA

Sottovia ferroviario – km 40+907

1346-PO-S11-PD-TGSP-28-01-E001

CARICHI VERTICALI peso del calcestruzzo della soletta G1 25 kN/mq calcolato in automatico dal software fem kN/mq Peso del ballast, armamento e conglomerato bituminoso G2 16,8 5 Peso della barriera G2 kN/mq Si applica sulla porzione di influenza del marciapiede Carichi accidentali QLM71 $Q_{vk} Q_{vk} Q_{vk} Q_{vk}$ q_{vk} q_{vk} ILLIMITATO ILLIMITATO $Q_{vk} = 250 \text{ kN } Q_{vk} = 80 \text{ kN/m}$ Coefficiente di andamento α 1,1 80 kN/m Carico distribuito qvk kΝ Carico concentrato Qvk 250 Carico equivalente genrato dal massimo momento Applicazione del carico distribuito (80kN/m) agli estremi 3,675 x,qvk m Momento per carico applicato in mezzeria (amplificato per α) Μ 3495,5 kNm Ρ1 147,9 kN/m Carico equivalente per trave semplicemente appoggiata 36,98 kN/mq Carico distribuito superficialmente equivalente q1 Carico equivalente genrato dal massimo taglio Applicazione del carico distribuito (80kN/m) all'estremo 8,15 m x,qvk 1370,9 kNm Taglio per carico applicato su appoggio (amplificato per α) Τ kN/m Carico equivalente per trave semplicemente appoggiata Р2 199,4 49,85 kN/mq Carico distribuito superficialmente equivalente q2

Carico distributo accidentale QLM71 (max q1;q2)

49,85

 Q_{LM71}

kN/mq

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA MONTECATINI TERME – LUCCA

Sottovia ferroviario – km 40+907 1346-PO-S11-PD-TGSP-28-01-E001

Carichi accidentali SW2

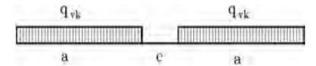


Fig. 5.2.2 -Modelli di carico SW

tratto a	a	25	m
tratto c	С	7	m
Coefficiente di andamento	α	1	-
Carico distribuito	qvk	150	kN/m
Carico equivalente genrato dal massimo momento			
Applicazione del carico distribuito (150kN/m) in mezzeria	x,qvk	0	m
Momento per carico applicato in mezzeria (amplificato per α)	M	3544,9	kNm
Carico equivalente per trave semplicemente appoggiata	P1	150,0	kN/m
Carico distribuito superficialmente equivalente	q1	37,50	kN/mq
Carico equivalente genrato dal massimo taglio			
Applicazione del carico distribuito (150kN/m) all'estremo	x,qvk	0	m
Taglio per carico applicato su appoggio (amplificato per α)	Т	1031,3	kNm
Carico equivalente per trave semplicemente appoggiata	P2	150,0	kN/m
Carico distribuito superficialmente equivalente	q2	37,50	kN/mq
Carico distributo accidentale QSW2 (max q1;q2)	Q_{sw2}	37,50	kN/mq
Carichi accidentali Marciapiedi			
Si considera non concomitante con il transito dei treni			
Distribuzione carico marciapiedi	q _{mar}	10	
Carico accidentale Marciapiede	\mathbf{Q}_{mar}	2,50	kN/mq

Carichi da Vento

Agente sulla superficie della barriera antirumore e su quella del manufatto, si considera un incremento pari a 0.4 kN/m² dovuto ad effetti aereodinamici associati al passaggio dei convogli

Pressione del vento amplificata Q_{wind} 1,85 kN/mq

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA MONTECATINI TERME – LUCCA

Sottovia ferroviario – km 40+907

1346-PO-S11-PD-TGSP-28-01-E001

Effetti dinamici

Le sollecitazioni e gli spostamenti determinati sulle strutture del ponte dall'applicazione statica dei modelli di carico debbono essere incrementati per tenere conto della natura dinamica del transito dei convogli.

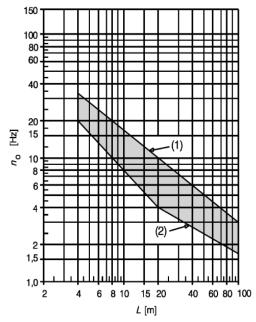
Si valutano i casi per treni che percorrono la tratta a velocità inferiore ai 200km/h

Si considerano linee con standard manutentivo ridotto

$$\Phi_3 = \frac{2.16}{\sqrt{L_{\phi}} - 0.2} + 0.73$$
 con la limitazione $1.00 \le \Phi_3 \le 2.00$

Lø rappresenta la lunghezza "caratteristica" in metri, così come definita in Tab. 5.2.II.

Dove Lf per questa analisi coincide con la lunghezza L Il coef. Dinamico non si usa per "treni scarichi" e "treni reali"


Coefficiente di incremento dinamico ø3 1,346

Carichi accidentali verticali dinamizzati

Carico distributo accidentale QLM71 Q_{LM71} 67,09 kN/mq Carico distributo accidentale QSW2 Q_{SW2} 50,46 kN/mq

Limiti delle frequenze proprie dell'impalcato

Velocità inferiore a 200km/h

(1) Limite superiore della frequenza naturale

(2) Limite inferiore della frequenza naturale

Mandanti

Mandataria

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA MONTECATINI TERME – LUCCA

Sottovia ferroviario – km 40+907

1346-PO-S11-PD-TGSP-28-01-E001

Lunghezza di calcolo	Lcalc	12,75	m
Pesi permanenti in com. caratteristica G1+G2; per la porzione di impalcato soggetta ai carichi ferroviari	P,perm	148,4	kN/m
Modulo elastico cls C30/37	Ec	32837	Mpa
Momento d'inerzia sezione impalcato	limp	2,96E+11	mm^4
ferroviari	f	5,26	mm
Frequenza limite superiore	n0i	5,82	Hz
Frequenza limite inferiore	n0s	13,34	Hz
Prima frequenza flessionale della trave appoggiata	n0	7,74	Hz
Verifica n0i< n0 <nos< td=""><td></td><td><u>verificato</u></td><td></td></nos<>		<u>verificato</u>	

CARICHI ORIZZONTALI

Forza centrifuga

Nei ponti ferroviari al di sopra dei quali il binario presenta un tracciato in curva deve essere considerata la forza centrifuga agente

su tutta l'estensione del tratto in curva. La forza centrifuga si considera agente verso l'esterno della curva, in direzione orizzontale ed applicata alla quota di 1,80 m al di sopra del P.F..

Velocità per LM71	V_{LM71}	140	km/h
Velocità per SW2	V_{SW2}	100	km/h
coefficiente di adattamento	f _{LM71}	0,92	
coefficiente di adattamento	f_{SW2}	1,00	

$$f = \left[1 - \frac{V - 120}{1000} \left(\frac{814}{V} + 1,75\right) \cdot \left(1 - \sqrt{\frac{2,88}{L_f}}\right)\right]$$

fattore di riduzione α 1,00

$$Q_{tk} = \frac{v^2}{v^2} \cdot \left(f \cdot \alpha Q_{vk} \right) = \frac{V^2}{127 \cdot r} \cdot \left(f \cdot \alpha Q_{vk} \right)$$

$$q_{tk} = \frac{v^2}{g \cdot r} \cdot \left(f \cdot \alpha q_{vk} \right) = \frac{V^2}{127 \cdot r} \cdot \left(f \cdot \alpha q_{vk} \right)$$

Distribuzione di forza centrifuga per carichi LM71 Pcentr,LH71 14,12 kN/mq
Distribuzione di forza centrifuga per carichi SW2 Pcentr,SW2 5,91 kN/mq

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA MONTECATINI TERME – LUCCA

Sottovia ferroviario – km 40+907 1346-PO-S11-PD-TGSP-28-01-E001

Azione di serpeggio

La forza laterale indotta dal serpeggio si considera come una forza concentrata agente orizzontalmente, applicata alla sommità della rotaia più alta, perpendicolarmente all'asse del binario. Tale azione si applicherà sia in rettifilo che in curva.

Il valore caratteristico di tale forza sarà assunto pari a Qsk = 100 kN. Tale valore deve essere moltiplicato per α , (se α >1), ma non per il coefficiente \emptyset .

Questa forza laterale deve essere sempre combinata con i carichi verticali

verticali.			
serpeggio . Sia per LM71 che per SW2	Q_{sk}	100	kN
Azione di frenatura			
Le forze di frenatura e di avviamento agiscono sulla sommità del			
binario, nella direzione longitudinale dello stesso. Dette forze			
sono da considerarsi uniformemente distribuite su una lunghezza			
di binario L determinata per ottenere l'effetto più gravoso			
sull'elemento strutturale considerato.			
Avviamento LM71 e SW2	$q_{la,k}$	33	kN/m
Frenatura LM71	$q_{lb,k}$	20	kN/m
Frenatura SW2	$q_{lb,k}$	35	kN/m
Si spalmano le azioni definite dalla NTC18 sulla superficie di influen	za		
Avviamento LM71 e SW2	$\mathbf{Q}_{la,k}$	8,25	kN/m
Frenatura LM71	$\mathbf{Q}_{lb,k}$	5,00	kN/m
Frenatura SW2	$\mathbf{Q}_{lb,k}$	8,75	kN/m
Azione del vento			
presente solo su un estremo dell'impalcato			
Distribuzione sulla barriera	q _{wind,barr}	9,25	kN/m
Applicato ad una altezza di	Hcar	2,5	m
COPPIE			
Di convita la comia conovata dell'applicazione del corio			
Di seguito le coppie generate dall'applicazione del carico Altezza di calcolo: piano del ferro-asse platea	н	1,50	m
Impronta di calcolo per l'asse ferroviario	A	48,813	m ²
impronta di carcolo per i asse terroviano	A	40,013	m
Coppia per avviamento LM71 e SW2	$MQ_{la,k (dir.x)}$	604,0546875	kNm
Coppia per Frenatura LM71	MQ _{lb,k (dir.x)}	366,09	kNm
Coppia per Frenatura SW2	MQ _{lb,k (dir.x)}	640,66	kNm
mezzeria per azione di serpeggio posto sul piano del ferro. Sia per	MQ _{sk (dir.y)}	150,00	kNm
Distribuzione di coppia indotta dall'azione del vento sulla barriera	Mq _{wind,barr (dir.y)}	23,125	kNm/m

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA MONTECATINI TERME – LUCCA

Sottovia ferroviario – km 40+907

1346-PO-S11-PD-TGSP-28-01-E001

RIEPILOGO AZIONI DI CALCOLO

Resoconto azioni LM71				
VERTICALI				
1 peso del calcestruzzo	G1	25,00	kN/mq	
2 Peso del ballast, armamento e conglomerato bituminoso	G2	16,80	kN/mq	⋿
3 Peso della barriera (ripartito sulla fascia del marciapiede)	G2	5,00	kN/mq	IBU
4 Carico distributo accidentale QLM71 dinamizzati	Q_{LM71}	67,09	kN/mq	DISTRIBUITI
5 Carico accidentale Marciapiede	Q_{mar}	2,50	kN/mq	
6 Pressione del vento amplificata	Q_{wind}	1,85	kN/mq	
7 Coppia per avviamento LM71	$MQ_{la,k (dir.x)}$	604,05	kNm	H
8 Coppia per Frenatura LM71	$MQ_{lb,k (dir.x)}$	366,09	kNm	iE TR∕
Coppia dovuta al carico concentrato orizzontale, applicato in				COPPIE JCENTRA
9 mezzeria per azione di serpeggio posto sul piano del ferro per LM71	$MQ_{sk (dir.y)}$	150,00	kNm	CON
	Mq _{wind,barr (dir.y)}	23,13	kNm/m	COPPIE
10 Coppia torcente indotta dall'azione del vento sulla barriera	· · · · · · · · · · · · · · · · · · ·			8
ORIZZONTALI				
11 Risultante di forza centrifuga per carichi LM71	Pcentr,LH71	689,47	kN	_ &
12 per LM71	Q_{sk}	100	kN	E E L
13 Avviamento LM71 (applicato in mezzeria)	Q _{la,k (diry)}	402,70	kN	CARICHI CONCENTRA TI
14 Frenatura LM71 (applicato in mezzeria)	Q _{lb,k (diry)}	244,06	kN	8
	, (, ,			H
15 Distribuzione sulla barriera (applicato in mezzeria)	$Mq_{wind,barr}$	9,25	kN/m	COPPIE
16 Coppia torcente dovuta al serpeggio (applicato in mezzeria)	MQsk	150	kN/m	CONCE
Resoconto azioni SW2				
VERTICALI				
1 peso del calcestruzzo	G1	25,00	kN/mq	
2 Peso del ballast, armamento e conglomerato bituminoso	G2	16,80	kN/mq	E
3 Peso della barriera (ripartito sulla fascia del marciapiede)	G2	5,00	kN/mq	DISTRIBUITI
4 Carico distributo accidentale QSW2 dinamizzati	Q_{SW2}	50,46	kN/mq	STR
5 Carico accidentale Marciapiede	Q_{mar}	2,50	kN/mq	
6 Pressione del vento amplificata	Q_{wind}	1,85	kN/mq	
7 Coppia per avviamento SW2	$MQ_{la,k (dir.x)}$	604,05	kNm	
8 Coppia per Frenatura SW2	$MQ_{lb,k (dir.x)}$	640,66	kNm	COPPIE CONCEN TRATE
9 mezzeria per azione di serpeggio posto sul piano del ferro per SW2	$MQ_{sk (dir.y)}$	150,00	kNm	
10 Coppia torcente indotta dall'azione del vento sulla barriera	$Mq_{wind,barr(dir.y)}$	23,13	kNm/m	COPPIE
ORIZZONTALI				
11 Risultante di forza centrifuga per carichi LM71	Pcentr,SW2	288,26	kN	⋖
12 per SW2	Q _{sk}	100	kN	I포
13 Avviamento SW2	$Q_{la,k}$	402,70	kN	CARICHI ONCENTI TI
14 Frenatura SW2	$Q_{lb,k}$	427,11	kN	CARICHI CONCENTRA TI
1111cliatala 3V2	□(b,k	,,		141
15 Distribuzione sulla barriera	$q_{wind,barr}$	9,25	kN/m	COPPIE
16 Coppia torcente dovuta al serpeggio (applicato in mezzeria)	MQsk	150	kN/m	CONCE

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA MONTECATINI TERME – LUCCA

Sottovia ferroviario – km 40+907

1346-PO-S11-PD-TGSP-28-01-E001

5. COMBINAZIONI DEI CARICHI E CRITERI DI VERIFICA

Le verifiche di sicurezza strutturali e geotecniche sono state condotte utilizzando le combinazioni di carico definite in ottemperanza alle NTC18, secondo quanto riportato nei paragrafi 2.5.3, 5.2.3. Di seguito sono mostrati i coefficienti parziali di sicurezza utilizzati allo SLU ed i coefficienti di combinazione adoperati per i carichi variabili nella progettazione delle strutture da ponte.

5.1. Combinazioni delle azioni

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni.

- Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU): $\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots \qquad [2.5.1]$
- Combinazione caratteristica, cosiddetta rara, generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili: $G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$ [2.5.2]
- Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili: $G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$ [2.5.3]
- Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine: $G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$ [2.5.4]
- Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica Ε:
 E + G₁ + G₂ + P + ψ₂₁ · Q_{k1} + ψ₂₂ · Q_{k2} + ...
 [2.5.5]
- Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali A: $G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$ [2.5.6]

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

 $G_1 + G_2 + \sum_i \psi_{2j} Q_{kj}$ [2.5.7]

Tab. 5.2.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

Coefficie	nte		EQU(1)	A1	A2
Azioni permanenti	favorevoli	YG1	0,90	1,00	1,00
	sfavorevoli		1,10	1,35	1,00
Azioni permanenti non	favorevoli	γG2	0,00	0,00	0,00
strutturali ⁽²⁾	sfavorevoli		1,50	1,50	1,30
Ballast ⁽³⁾	favorevoli	γв	0,90	1,00	1,00
	sfavorevoli		1,50	1,50	1,30
Azioni variabili da traffi-	favorevoli	γQ	0,00	0,00	0,00
CO ⁽⁴⁾	sfavorevoli		1,45	1,45	1,25
Azioni variabili	favorevoli	γQi	0,00	0,00	0,00
	sfavorevoli	'	1,50	1,50	1,30
Precompressione	favorevole	γP	0,90	1,00	1,00
	sfavorevo-		1,00(5)	1,00%	1,00
	le				
Ritiro, viscosità e cedi-	favorevole	γCe	0,00	0,00	0,00
menti non imposti appo-	sfavorevo-	d	1,20	1,20	1,00
sitamente	le				

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori della colonna A2.

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA MONTECATINI TERME – LUCCA

Sottovia ferroviario – km 40+907

1346-PO-S11-PD-TGSP-28-01-E001

Tab. 5.2.VI - Coefficienti di combinazione Ψ delle azioni

Azioni		ψ ₀	ψ1	ψ 2
Azioni singole	Carico sul rilevato a tergo delle spalle	0,80	0,50	0,0
da traffico	Azioni aerodinamiche generate dal transito dei convogli	0,80	0,50	0,0
	gr_1	0,80 ⁽²⁾	0,80(1)	0,0
Gruppi di	gr_2	0,80 ⁽²⁾	0,80(1)	-
carico	gr ₃	0,80(2)	0,80(1)	0,0
	gr ₄	1,00	1,00(1)	0,0
Azioni del vento	F _{Wk}	0,60	0,50	0,0
Azioni da in fase di esecuzione		0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T _k	0,60	0,60	0,50

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

Le azioni dell'impalcato vengono combinate considerando i gruppi di combinazione dei carichi dovuti al traffico ferroviario indicati in tabella 5.2.IV delle NTC18. Si fa riferimento in particolare al Gruppo 3 per massimizzare sulla spalla la massima azione longitudinale dell'impalcato.

Tab. 5.2.IV -Valutazione dei carichi da traffico

TIPO DI CARICO	Azioni v	erticali		Azioni orizzont	ali					
Gruppi di carico	Carico verticale (1)	Treno scarico	Frenatura e avviamento	Centrifuga	Serpeggio	Commenti				
Gruppo 1	1,0	-	0,5 (0,0)	1,0 (0,0)	1,0 (0,0)	massima azione verticale e laterale				
Gruppo 2 (2)	1	1,0	0,0	1,0 (0,0)	1,0 (0,0)	stabilità laterale				
Gruppo 3 (2)	1,0 (0,5)	-	1,0	0,5 (0,0)	0,5 (0,0)	massima azione longitudinale				
Gruppo 4	0,8 (0,6;0,4)	-	0,8 (0,6;0,4)	0,8 (0,6;0,4)	0,8 (0,6;0,4)	Fessurazione				

⁽¹⁾ Includendo tutti i valori (F; a; etc..)

I valori campiti in grigio rappresentano l'azione dominante.

Le verifiche della spalla sono state effettuate secondo l'Approccio 1 definito nelle NTC'18, che prevede differenti coefficienti di sicurezza amplificativi per le azioni (A) e riduttivi per i materiali (M) a seconda del tipo di verifica che si effettua.

Per le verifiche strutturali (resistenza muro di testata, muro paraghiaia, plinto di fondazione, verifiche strutturali dei pali) si è utilizzata la combinazione di coefficienti:

Mandataria

⁽a) Quando come azione di base venga assunta quella del vento, i coefficienti ψ₀ relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

⁽²⁾ La simultaneità di due o tre valori caratteristici interi (assunzione di diversi coefficienti pari ad 1.0), sebbene improbabile, è stata considerata come semplificazione per i gruppi di carico 1,2 e 3 senza che ciò abbia significative conseguenze progettuali.

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA MONTECATINI TERME – LUCCA

Sottovia ferroviario – km 40+907

1346-PO-S11-PD-TGSP-28-01-E001

Combinazione 1: A1 + M1 + R1

Per quanto riguarda le verifiche geotecniche è stata utilizzata la combinazione di coefficienti seguente:

Combinazione 2: A2 + M2 + R2

Per la verifica dei pali di fondazione è stata adoperata la combinazione dei coefficienti A2 + M1 + R2 come riportato nella Circolare 2/2/2009, al paragrafo C6.4.3.1.

Nel calcolo delle spinte statiche in esercizio dovute al terreno ed al sovraccarico accidentale sono stati utilizzati parametri del terreno M1 per le combinazioni STR, e parametri del terreno M2 per le combinazioni GEO.

In presenza di azione sismica le spinte del terreno (calcolate in condizioni di riposo) e le sovraspinte dovute al sisma (calcolate con la teoria di Wood), sono state calcolate con parametri del terreno ridotti M1, per le combinazioni SLV-STR, M2 per le combinazioni SLV-GEO.

I coefficienti parziali per i parametri geotecnici sono riportati nella tabella seguente:

Tab. 6.2.II – Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ_{M}	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$\tan{\phi'_k}$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	Ye	1,0	1,25
Resistenza non drenata	c _{uk}	γα	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

Le tabelle seguenti spiegano le combinazioni di carico considerate e i coefficienti applicati per ciascun caso di carico:

Azioni di carico

N	Descrizione	Descrizione estesa	Tipo	Cat.	γ	ψ0	Ψ1	ψ2	Classe
									Durata
2	caric. perm	Carichi permanenti elementi non struttur	G2		1.45	1	1	1	Perm.
25	Q fr/av LM71	Azione di frenatura e avviamento per LM7	Q		1	1	1	0.2	Media
26	Q fr/av SW2	Azione di frenatura e avviamento per SW2	Q		1	1	1	0.2	Media
27	Qdin LM71	Azione di carico dinamizzato per LM71	Q		1	1	1	0.2	Media
28	Qdin SW2	Azione di carico dinamizzato per SW2	Q		1	1	1	0.2	Media
29	Qserp LM71	Azione di carico di serpeggio per LM71	Q		1	1	1	0.2	Media
30	Qserp SW2	Azione di carico di serpeggio per SW2	Q		1	1	1	0.2	Media
33	Vento imp	Vento impalcato	Q		1.5	0.6	1	0	Breve
34	Qv imp.	carico accidentale impalcato	Q	RFI	1	1	1	0.2	Media
35	Qcentrif LM71 x	Risultante forza centrifuga per LM71	Q	RFI	1	1	1	0.2	Media
36	Qcentrif SW2 x	Risultante forza centrifuga per SW2	Q	RFI	1	1	1	0.2	Media
41	QBall	carico accidentale Ballast	Q	RFI	1	1	1	0.2	Media

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA MONTECATINI TERME – LUCCA

Sottovia ferroviario – km 40+907

1346-PO-S11-PD-TGSP-28-01-E001

£											C	OMBIN	IAZION	NI.										
fam. di comb.				G1	G2	Qv	Qbal	St (M1)	Sq (M1) LM71	Sq (M1) SW2	Qserp. LM71	Qserp. SW2	Qfren/ avv LM71	Qfren/ avv SW2	Qecc, imp LM71	Qecc, imp SW2	Qdin. LM71	Qdin. SW2	Qsop. LM71	Qsop. SW2	Vento imp.	Ex	Ey	Sq Wood
	GRUPPO 1	1	SLU STR LM71	1,350	1,500	1,500	1,500	1,350	1,450	0,000	1,450	0,000	0,725	0,000	1,450	0,000	1,450	0,000	1,450	0,000	0,870	0,000	0,000	0,000
	GRUPPOI	2	SLU STR SW2	1,350	1,500	1,500	1,500	1,350	0,000	1,450	0,000	1,450	0,000	0,725	0,000	1,450	0,000	1,450	0,000	1,450	0,870	0,000	0,000	0,000
		3	SLU STR LM71	1,350	1,500	1,500	1,500	1,350	1,450	0,000	0,725	0,000	1,450	0,000	1,450	0,000	1,450	0,000	1,450	0,000	0,870	0,000	0,000	0,000
	GRUPPO 2	4	SLU STR SW2	1,350	1,500	1,500	1,500	1,350	0,000	1,450	0,000	0,725	0,000	1,450	0,000	1,450	0,000	1,450	0,000	1,450	0,870	0,000	0,000	0,000
	GRUPPO 1	5	SLU VENTO -	1,350	1,500	1,500	1,500	1,350	1,450	0,000	1,000	0,000	0,500	0,000	1,000	0,000	1,000	0,000	1,000	0,000	1,450	0,000	0,000	0,000
1	GROFFOI	6	SLU VENTO -	1,350	1,500	1,500	1,500	1,350	0,000	1,450	0,000	1,000	0,000	0,500	0,000	1,000	0,000	1,000	0,000	1,000	1,450	0,000	0,000	0,000
1	GRUPPO 2	7	SLU VENTO -	1,350	1,500	1,500	1,500	1,350	1,450	0,000	0,500	0,000	1,000	0,000	1,000	0,000	1,000	0,000	1,000	0,000	1,450	0,000	0,000	0,000
	GROFFO 2	8	SLU VENTO -	1,350	1,500	1,500	1,500	1,350	0,000	1,450	0,000	0,500	0,000	1,000	0,000	1,000	0,000	1,000	0,000	1,000	1,450	0,000	0,000	0,000
		9	SLU VENTO +	1,000	0,000	0,000	0,000	1,100	1,100	0,000	1,000	0,000	0,500	0,000	1,000	0,000	1,000	0,000	1,000	0,000	1,450	0,000	0,000	0,000
	GRUPPO 1	10	SLU VENTO +	1,000	0,000	0,000	0,000	1,100	0,000	1,100	0,000	1,000	0,000	0,500	0,000	1,000	0,000	1,000	0,000	1,000	1,450	0,000	0,000	0,000
	GRUPPO 2	11	SLU VENTO +	1,000	0,000	0,000	0,000	1,100	1,100	0,000	0,500	0,000	1,000	0,000	1,000	0,000	1,000	0,000	1,000	0,000	1,450	0,000	0,000	0,000
	GROFFO 2	12	SLU VENTO +	1,000	0,000	0,000	0,000	1,100	0,000	1,100	0,000	0,500	0,000	1,000	0,000	1,000	0,000	1,000	0,000	1,000	1,450	0,000	0,000	0,000
2	GRUPPO 4	13	SLE RARA LM71	1,000	0,000	0,000	0,000	1,100	1,100	1,100	0,000	0,800	0,000	0,800	0,000	0,800	0,000	0,800	0,000	0,800	0,600	0,000	0,000	0,000
	GROTTO	14	SLE RARA SW2	1,000	0,000	0,000	0,000	1,100	1,100	1,100	0,800	0,000	0,800	0,000	0,800	0,000	0,800	0,000	0,800	0,000	0,600	0,000	0,000	0,000
		15	SLE FREQ LM71	1,000	0,000	0,000	0,000	1,100	1,100	1,100	0,000	0,800	0,000	0,800	0,000	0,800	0,000	0,800	0,000	0,800	0,200	0,000	0,000	0,000
3	GRUPPO 4	16	SLE FREQ SW2	1,000	0,000	0,000	0,000	1,100	1,100	1,100	0,800	0,000	0,800	0,000	0,800	0,000	0,800	0,000	0,800	0,000	0,200	0,000	0,000	0,000
4	GRUPPO 4	17	SLE Q.PERM LM71	1,000	0,000	0,000	0,000	1,100	1,100	1,100	0,000	0,800	0,000	0,800	0,000	0,800	0,000	0,800	0,000	0,800	0,000	0,000	0,000	0,000
·		18	SLE Q.PERM SW2	1,000	0,000	0,000	0,000	1,100	1,100	1,100	0,800	0,000	0,800	0,000	0,800	0,000	0,800	0,000	0,800	0,000	0,000	0,000	0,000	0,000
	GRUPPO 1	13	SLU GEO LM71	1,000	1,300	1,300	1,300	1,220	1,525	1,525	1,250	0,000	0,625	0,000	1,250	0,000	1,250	0,000	1,250	0,000	0,750	0,000	0,000	0,000
5		14	SLU GEO SW2	1,000	1,300	1,300	1,300	1,220	1,525	1,525	0,000	1,250	0,000	0,625	0,000	1,250	0,000	1,250	0,000	1,250	0,750	0,000	0,000	0,000
	GRUPPO 2	15	SLU GEO LM71	1,000	1,300	1,300	1,300	1,220	1,525	1,525	0,625	0,000	1,250	0,000	0,625	0,000	1,250	0,000	1,250	0,000	0,750	0,000	0,000	0,000
		16	SLU GEO SW2	1,000	1,300	1,300	1,300	1,220	1,525	1,525	0,000	0,625	0,000	1,250	0,000	1,250	0,000	1,250	0,000	1,250	0,750	0,000	0,000	0,000
	GRUPPO 1	17	SLV EX LM71	1,000	1,000	1,000	1,000	1,000	0,200	0,000	0,200	0,000	0,100	0,000	0,200	0,000	0,200	0,000	0,200	0,000	0,000	1,000	0,300	1,000
	0.01101	18	SLV EX SW2	1,000	1,000	1,000	1,000	1,000	0,000	0,200	0,000	0,200	0,000	0,100	0,000	0,200	0,000	0,200	0,000	0,100	0,000	1,000	0,300	1,000
	GRUPPO 2	19	SLV EX LM71	1,000	1,000	1,000	1,000	1,000	0,200	0,000	0,100	0,000	0,200	0,000	0,200	0,000	0,200	0,000	0,200	0,000	0,000	1,000	0,300	1,000
8		20	SLV EX SW2	1,000	1,000	1,000	1,000	1,000	0,000	0,200	0,000	0,100	0,000	0,200	0,000	0,200	0,000	0,200	0,000	0,200	0,000	1,000	0,300	1,000
	GRUPPO 1	21	SLV EY LM71	1,000	1,000	1,000	1,000	1,000	0,200	0,000	0,200	0,000	0,100	0,000	0,200	0,000	0,200	0,000	0,200	0,000	0,000	1,000	0,300	1,000
		22	SLV EY SW2	1,000	1,000	1,000	1,000	1,000	0,000	0,200	0,000	0,200	0,000	0,100	0,000	0,200	0,000	0,200	0,000	0,100	0,000	1,000	0,300	1,000
	GRUPPO 2	23	SLV EY LM71	1,000	1,000	1,000	1,000	1,000	0,200	0,000	0,100	0,000	0,200	0,000	0,200	0,000	0,200	0,000	0,200	0,000	0,000	1,000	0,300	1,000
		24	SLV EY SW2	1,000	1,000	1,000	1,000	1,000	0,000	0,200	0,000	0,100	0,000	0,200	0,000	0,200	0,000	0,200	0,000	0,200	0,000	1,000	0,300	1,000

- Famiglia di combinazione 1: Combinazioni SLU PER VERIFICHE STRUTTURALI
- Famiglia di combinazione 2: Combinazioni SLE RARA
- Famiglia di combinazione 3: Combinazioni SLE FREQUENTE
- Famiglia di combinazione 4: Combinazioni SLE QUASI PERMANENTE
- Famiglia di combinazione 5: Combinazioni SLU PER VERIFICHE GEOTECNICHE
- Famiglia di combinazione 8: Combinazioni SLV

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA MONTECATINI TERME – LUCCA

Sottovia ferroviario – km 40+907

1346-PO-S11-PD-TGSP-28-01-E001

Simultaneità delle azioni da traffico

Utilizzato per SLU/SLV coef. siurezza variabili da traffico γ q(A1)													
GRUPPO 1 Sia per LM71 che per SW2													
Qserp	1,000	Х	1,450	=	1,450								
Qfren/avv	0,500	Х	1,450	=	0,725								
Qecc.imp													

Utilizzato per SLU/SLV coef. siurezza variabili da traffico γ q(A1)												
GRUPPO 2 Sia per LM71 che per SW2												
Qserp	0,500	Х	1,450	=	0,725							
Qfren/avv	1,000	х	1,450	=	1,450							
Qecc.imp												

utilizzato per SLE/SLD												
GRUPPO 4 Sia per LM71 che per SW2												
Qserp	0,800	Х	1,000	=	0,800							
Qfren/avv	0,800	х	1,000	=	0,800							
Qecc.imp	0,800	х	1,000	=	0,800							

utilizzato per SLE/SLU coef. siurezza Tab. 6.2.II											
Spinte del terreno app1 comb1											
	A1 M1										
St	St Spinta Statica Terreno										
Sq LM71	Spinta Statica svraccarico	1,450	1,000								
Sq SW2	Spinta Statica svraccarico	1,450	1,000								
S wood	Spinta Sismica	1,000	1,000								

utilizzato per SLE/SLU coef. siurezza Tab. 6.2.II											
Spinte del terreno app1 comb2											
A2 M2											
St	St Spinta Statica Terreno 1,000 1,000										
Sq LM71	Spinta Statica svraccarico	1,250	1,000								
Sq SW2	· · · · · · · · · · · · · · · · · · ·										
S wood											

Coeff. Di ragguaglio Spinta M1 su M2

ko(M1)	0,384
ko(M2)	0,470
С	1.223

Trasforma la spinta calcolata con M1 nella spinta calcolata in M2

Utilizzato per SLU/SLV coef. siurezza variabili da traffico γ q(A2)											
	GRUPPO 1 Sia per LM71 che per SW2										
Qserp	1,000	х	1,250	=	1,250						
Qfren/avv	Ofren/avv 0,500 x 1,250 = 0,625										
Qecc.imp	1,000	Х	1,250	=	1,250						

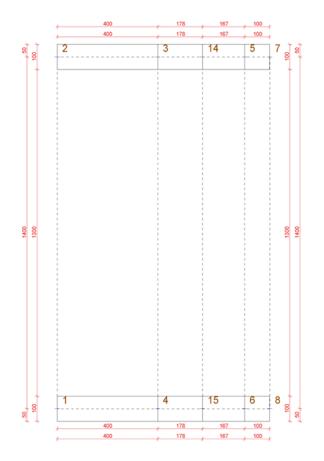
Utilizzato per SLU/SLV coef. siurezza variabili da traffico γ q(A2)												
	GRUPPO 2 Sia per LM71 che per SW2											
Qserp	Qserp 0,500 x 1,250 = 0,625											
Qfren/avv	Qfren/avv 1,000 x 1,250 = 1,250											
Qecc.imp	1,000	Х	1,250	=	1,250							

In analisi sismica si considera un'aliquota del 20% del carico da traffico cap. 5.2.2.8 NTC18

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA MONTECATINI TERME – LUCCA

Sottovia ferroviario – km 40+907

1346-PO-S11-PD-TGSP-28-01-E001


Archivio Carichi concentrati

Ν	descrizione	Fx [N]	Fy [N]	Fz [N] Massa Fz	Mx [Nm]	My [Nm]	Mz [Nm] Azione carico
3	Q din.LM71	0	0	0 No	0	0	0 27) Qdin LM71
4	Q din.SW2	0	0	0 No	0	0	0 28) Qdin SW2
5	Qserp.LM71 z	0	0	0 No	0	0	0 29) Qserp LM71
6	Qserp.SW2 z	0	0	0 No	0	0	0 30) Qserp SW2
7	Qfren LM71	0	-275130	0 No	-440200	0	0 25) Q fr/av LM71
8	Qfren SW2 z	0	-481470	0 No	-770350	0	0 26) Q fr/av SW2
11	Qcentrif LM71 x	0	0	0 No	0	0	0 35) Qcentrif LM71 x
12	Qcentrif SW2 x	0	0	0 No	0	0	0 36) Qcentrif SW2 x
13	Vento y	0	0	0 No	0	0	0 33) Vento imp
15	Qserp.LM71 y	100000	0	0 No	0	-160000	0 29) Qserp LM71
16	Qserp.SW2 y	100000	0	0 No	0	-160000	0 30) Qserp SW2
17	Qavv LM71	0	406920	0 No	613870	0	0 25) Q fr/av LM71
18	Qavy SW2 x	0	453960	0 No	726330	0	0.26) Q fr/av SW2

Archivio Carichi Distribuiti 2D

		_			
N	Descrizione	Carico	Azione	Masse	Direzione
		[N/m ²]			Carichi
5	ballast e armamento	16800	41) QBall	Sì	verticale
6	QLM71 dinamizzati	62350	27) Qdin LM71	Sì	verticale
7	VENTO Z	1850	33) Vento imp	No	verticale
8	barriera	20000	2) caric. perm	Sì	verticale
9	Accidentale marciapi	10000	34) Qv imp.	Sì	verticale
10	QLSW2 dinamizzati	49050	28) Qdin SW2	Sì	verticale

6. PROGETTO DELL' IMPALCATO

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA MONTECATINI TERME – LUCCA

Sottovia ferroviario – km 40+907

1346-PO-S11-PD-TGSP-28-01-E001

6.1. Azione sismica

La pericolosità sismica di base è stata definita sulla base delle coordinate geografiche del sito di realizzazione dell'opera:

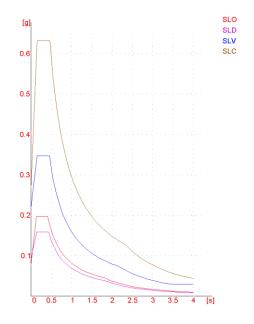
Latitudine: 43.843 N Longitudine: 10.569 E

In accordo al la Tabella 2.5.1.1.1-1 del Manuale di Progettazione, si considera la seguente Vita Nominale:

 $V_N \ge 50$ anni

Dalla Tabella 2.5.1.1.2-1 del Manuale, si ricava la classe d'uso dell'opera in esame, la C III, per la quale il coefficiente d'uso risulta:

$$C_{\rm U} = 1.5$$


Ne consegue un periodo di riferimento per la valutazione delle azioni sismiche sulla struttura:

$$V_R = V_N \cdot C_U \ge 75 \ anni$$

Per il sottosuolo in questione si ha: Categoria di sottosuolo: C Condizione topografica: T1

Infine, si considera un fattore di struttura come suggerito da NTC'18 al paragrafo 7.9.5.6.2 sulla base del collegamento con l'impalcato. Nel caso in esame si analizza la parete con apparecchio di appoggio fisso. Si ha quindi:

Fattore di struttura: 1 L'azione sismica è la seguente:

Sisma

- Zona sisma: 3: bassa

Codice zona regionale:
 Classe Uso:
 III: Affollamento significativo

Coefficiente d'uso Cu: 1.5
 Periodo di riferimento [anni]: 75
 Quota relativa allo zero sismico [m]: 0

- Risposta locale Sisma

Categoria Sottosuolo: C: Vs,30 <180m/s
Categoria Topografica: T1: Pianeggiante (i<15°)

Mandataria

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA MONTECATINI TERME – LUCCA

Sottovia ferroviario – km 40+907

1346-PO-S11-PD-TGSP-28-01-E001

Sisma: Parametri ag, Fo, Tc*

Stato Limite	Pvr[%]	Tr	ag/g	Fo	Tc*[s]
SLO	81	45.161	0.05099	2.5571	0.24797
SLD	63	75.434	0.061194	2.5812	0.26695
SLV	10	711.84	0.14742	2.3747	0.29435
SLC	5	1462 2	0.18507	2 3853	0.30304

Sisma orizzontale sito

S.L.	Prv [%]	Tr	S	ST	Ss	Cc	Tc	ag	PGA	Se(Tc)	Se(Tc)
		[anni]					[s]	[m/s ²]	[m/s ²]	[m/s²]	[g]
SLO	81	45.161	1.5	1	1.5	1.6635	0.41252	0.50004	0.75006	0.19558	1.9179
SLD	63	75.434	1.5	1	1.5	1.6236	0.43341	0.60011	0.90016	0.23693	2.3235
SLV	10	711.84	1.49	1	1.49	1.572	0.46273	1.4457	2.154	0.52158	5.115
SLC	5	1462.2	1.4351	1	1.4351	1.557	0.47183	1.8149	2.6046	0.63354	6.2129

Spettri elastici [q]

Spettii	Clastici [S											
		direzione	e X [g]			direzione	e Y [g]			direzione	e Z [g]	
T [s]	SLO	SLD	SLV	SLC	SLO	SLD	SLV	SLC	SLO	SLD	SLV	SLC
0.00	0.0765	0.0918	0.2196	0.2656	0.0765	0.0918	0.2196	0.2656	0.0155	0.0204	0.0764	0.1075
0.05	0.1198	0.1420	0.3175	0.3826	0.1198	0.1420	0.3175	0.3826	0.0397	0.0527	0.1814	0.2564
0.10	0.1631	0.1923	0.4154	0.4995	0.1631	0.1923	0.4154	0.4995	0.0397	0.0527	0.1814	0.2564
0.15	0.1956	0.2369	0.5133	0.6165	0.1956	0.2369	0.5133	0.6165	0.0397	0.0527	0.1814	0.2564
0.20	0.1956	0.2369	0.5216	0.6335	0.1956	0.2369	0.5216	0.6335	0.0298	0.0396	0.1361	0.1923
0.25	0.1956	0.2369	0.5216	0.6335	0.1956	0.2369	0.5216	0.6335	0.0238	0.0316	0.1089	0.1538
0.30	0.1956	0.2369	0.5216	0.6335	0.1956	0.2369	0.5216	0.6335	0.0199	0.0264	0.0907	0.1282
0.35	0.1956	0.2369	0.5216	0.6335	0.1956	0.2369	0.5216	0.6335	0.0170	0.0226	0.0778	0.1099
0.40	0.1956	0.2369	0.5216	0.6335	0.1956	0.2369	0.5216	0.6335	0.0149	0.0198	0.0680	0.0961
0.45	0.1793	0.2282	0.5216	0.6335	0.1793	0.2282	0.5216	0.6335	0.0132	0.0176	0.0605	0.0855
0.50	0.1614	0.2054	0.4827	0.5979	0.1614	0.2054	0.4827	0.5979	0.0119	0.0158	0.0544	0.0769
0.60	0.1345	0.1711	0.4023	0.4982	0.1345	0.1711	0.4023	0.4982	0.0099	0.0132	0.0454	0.0641
0.70	0.1153	0.1467	0.3448	0.4270	0.1153	0.1467	0.3448	0.4270	0.0085	0.0113	0.0389	0.0549
0.80	0.1008	0.1284	0.3017	0.3737	0.1008	0.1284	0.3017	0.3737	0.0075	0.0099	0.0340	0.0481
0.90	0.0896	0.1141	0.2682	0.3321	0.0896	0.1141	0.2682	0.3321	0.0066	0.0088	0.0302	0.0427
1.00	0.0807	0.1027	0.2414	0.2989	0.0807	0.1027	0.2414	0.2989	0.0060	0.0079	0.0272	0.0385
1.50	0.0538	0.0685	0.1609	0.1993	0.0538	0.0685	0.1609	0.1993	0.0026	0.0035	0.0121	0.0171
2.00	0.0364	0.0474	0.1207	0.1495	0.0364	0.0474	0.1207	0.1495	0.0015	0.0020	0.0068	0.0096
2.50	0.0233	0.0303	0.0846	0.1119	0.0233	0.0303	0.0846	0.1119	0.0010	0.0013	0.0044	0.0062
3.00	0.0162	0.0210	0.0587	0.0777	0.0162	0.0210	0.0587	0.0777	0.0007	0.0009	0.0030	0.0043
3.50	0.0119	0.0155	0.0431	0.0571	0.0119	0.0155	0.0431	0.0571	0.0005	0.0006	0.0022	0.0031
4.00	0.0091	0.0118	0.0330	0.0437	0.0091	0.0118	0.0330	0.0437	0.0004	0.0005	0.0017	0.0024

6.2. Modello di calcolo

Le sollecitazioni di progetto vengono determinate mediante lo sviluppo di un modello agli elementi finiti elaborato con il codice di calcolo strutturale JaspTM PRO - vers: 6.0.36 - Lic.n°:155-2016.

La soletta è stata modellata con elementi shell a quattro nodi collegati sull'asse delle pareti. Lo spessore della soletta è 120cm. Il calcestruzzo è di classe C30/37. Per cogliere il reale comportamento della platea la si poggia su pareti di spessore 1m a sua volta poggiata su fondazioni nastriforme. La verifica assiale della soletta viene valutata nella seconda fase, quando si esegue lo studio della paratia.

L'analisi numerica è condotta col metodo degli spostamenti ipotizzando un comportamento elasticolineare degli elementi. È quindi utilizzata la tecnica degli elementi finiti connessi solo in corrispondenza di un numero prefissato di punti denominati nodi. I nodi sono definiti dalle tre coordinate cartesiane in un sistema di riferimento globale. Le incognite del problema sono gli spostamento dei nodi (6 per ogni nodo) riferite al sistema di riferimento globale, unico per tutti i componenti.

Gli spostamenti incogniti sono ottenuti risolvendo un sistema di equazioni algebriche lineari i cui termini noti sono costituiti dalle forze concentrate nei nodi:

 $\mathbf{K} \cdot \mathbf{u} = \mathbf{F}$

in cui:

Mandataria

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA MONTECATINI TERME – LUCCA

Sottovia ferroviario – km 40+907

1346-PO-S11-PD-TGSP-28-01-E001

K = matrice di rigidezza della struttura

u = vettore spostamenti nodali

 \mathbf{F} = vettore forze nodali

La risoluzione numerica del sistema viene perseguita tramite il metodo di Cholesky

Ottenuti gli spostamenti vengono calcolate le sollecitazioni nei singoli elementi riferite al sistema di riferimento locale dell'elemento stesso.

Gli elementi utilizzati per la modellazione dello schema strutturale sono:

Beam: Elemento con una dimensione prevalente che unisce due punti dello spazio. Utilizzato per travi , pilastri e pareti duttili. Il modello adottato è quello di Timoshenko.

Shell Triangolare: Elemento bidimensionale triangolare con 3 nodi (corrispondenti ai 3 vertici) ottenuto dall'unione di un elemento lastra CST (Constant Strain Triangle) con 6 gdl e di un elemento piastra sottile di Kirchhoff DKT (Discrete Kirchhoff Triangle) [4-2] con 9 gdl.

Shell Rettangolare [4-1]: Elemento bidimensionale rettangolare con 4 nodi (corrispondenti ai 4 vertici) ottenuto dall'unione di un elemento lastra LSR (Linear Strain Rectangle) con 8 gdl e di un elemento piastra sottile di Kirchhoff ACM (Elemento Adini-Clough-Melosh, 1961-63) con 12 gdl.

Rigel: Elemento rettilineo a 2 nodi infinitamente rigido usato per modellare un legame infinitamente rigido tra due nodi.

Il sistema di riferimento globale è orientato con l'asse z verso l'alto. Il sistema di riferimento delle aste ha l'origine nel primo nodo dell'asta, gli assi x e y coincidenti con gli assi della sezione e l'asse z orientato come l'asta. Le rotazioni sono considerate positive se concorde con gli assi vettori.

Nel sistema di riferimento locale l'elemento shell giace nel piano x', y'. Per gli shell verticali l'asse x' è scelto parallelo al piano orizzontale con l'angolo x'-x compreso tra-45°(escluso) e 135°; l'asse y' è rivolto verso l'alto. Per gli shell orizzontali l'asse x' è parallelo all'asse x, e l'asse z' è rivolto verso l'alto.

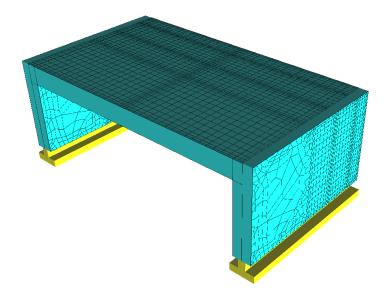


Figura 5-6-1Vista 3D del modello agli elementi finiti della struttura scatolare

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA MONTECATINI TERME – LUCCA

Sottovia ferroviario – km 40+907

1346-PO-S11-PD-TGSP-28-01-E001

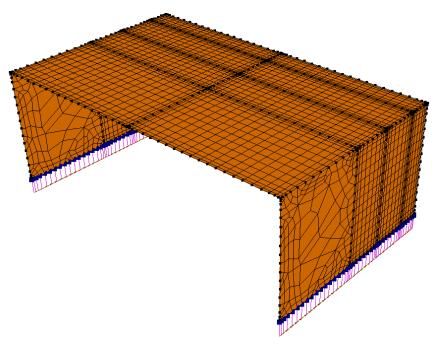


Figura 5-2V ista unifilare del modello agli elementi finiti della struttura scatolare

6.3. Sollecitazioni di progetto

Si riportano di seguito le distribuzioni di sollecitazioni flessionali e taglianti, più significative, allo stato limite ultimo, sulla soletta.

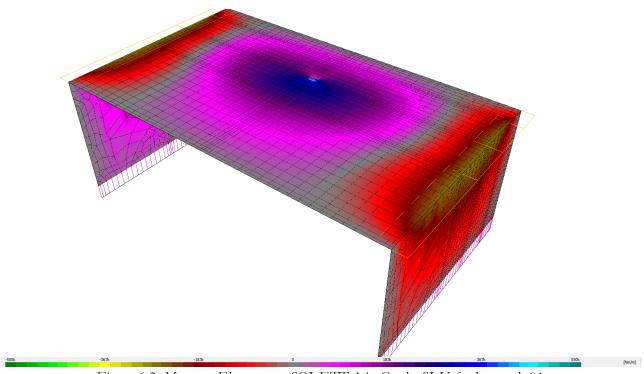


Figura 6-2- Momento Flettente mx SOLETTA in Combo SLU-fondamentale-01

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA MONTECATINI TERME – LUCCA

Sottovia ferroviario – km 40+907

1346-PO-S11-PD-TGSP-28-01-E001

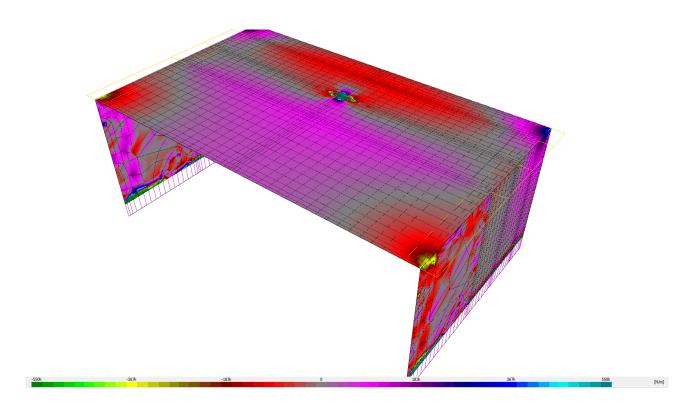


Figura 6-3 Taglio V_x SOLETTA in Combo SLU-fondamentale-01

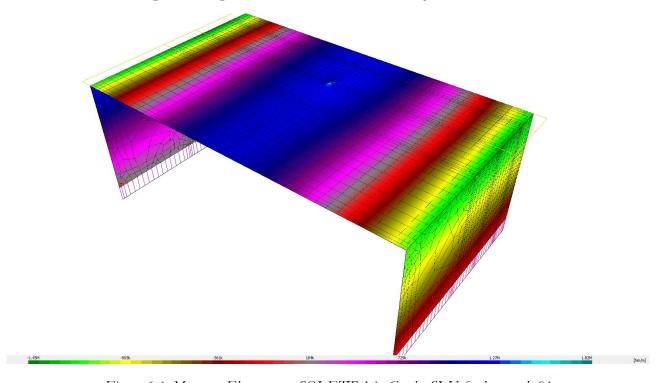


Figura 6-4- Momento Flettente **m**_y SOLETTA in Combo SLU-fondamentale-01

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA MONTECATINI TERME – LUCCA

Sottovia ferroviario – km 40+907 1346-PO-S11-PD-TGSP-28-01-E001

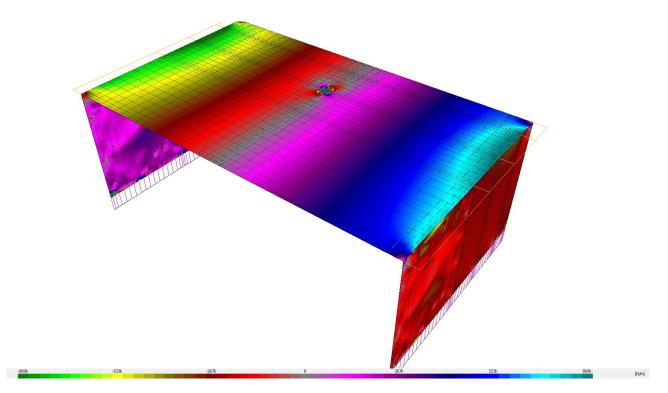


Figura 6-5- Taglio V_y SOLETTA in Combo SLU-fondamentale-01

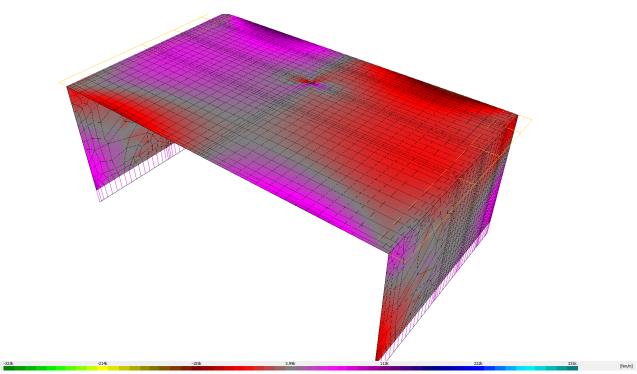


Figura 6-6- Momento Torcente **Mxy** SOLETTA in Combo SLU-fondamentale-01

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA MONTECATINI TERME – LUCCA

Sottovia ferroviario – km 40+907

1346-PO-S11-PD-TGSP-28-01-E001

6.4. Verifica degli elementi costituenti l'impalcato

Nel caso di lastra le sollecitazioni di verifica delle armature sono calcolate come indicato nell' appendice F EC2-2, ovvero, a vantaggio di sicurezza:

$$n'_{dx} = n_{Edx} + |n_{Edxy}|$$
 (7.7a)

$$n'_{dy} = n_{Edy} + |n_{Edxy}|$$
 (7.7b)

Con n_{Edy} positiva se di trazione.

Nel caso di piastra i momenti di verifica delle armature sono calcolati, a vantaggio di sicurezza, con le seguenti espressioni [5-5]:

$$m'_{dx} = m_{Edx} \pm |m_{Edxy}| \qquad (7.8a)$$

$$m'_{dy} = m_{Edy} \pm |m_{Edxy}|$$
 (7.8b)

Nel caso generale si utilizzano entrambe le sollecitazioni calcolate con le (7.7) e (7.8) e la verifica è eseguita a presso-tenso-flessione.

Verifiche calcestruzzo Shell

Per la verifica del calcestruzzo il software ricerca le direzioni principali di compressione superiore e inferiore. Per le 4 direzioni trovate si esegue la verifica a pressoflessione.

Per il solo fine di verifica del calcestruzzo, nella generica sezione con direzione ϕ , si considera presente l'armatura:

$$A_{s\phi} = A_{sx} \cos^2 \phi + A_{sy} \sin^2 \phi$$

Utilizzando sostanzialmente il metodo della linea di rottura di Johansen.

Nel caso di lastre la verifica dei puntoni di calcestruzzo è effettuata con la formula:

$$n_{cd} = 2 | n_{Edxy}| < v \cdot f_{cd} \cdot h$$
 (F.4 EC2-2005)

Nel caso generico, per la verifica dei puntoni di calcestruzzo, si utilizza il modello a sandwich descritto nell'allegato LL EC2-2, formule: (LL.137) – (LL.142)

Verifiche a punzonamento Shell

La verifica a punzonamento è effettuata come indicato nel §6.4 dell'EC2-1-1, utilizzando, a vantaggio di sicurezza, le sollecitazioni di taglio puntuali calcolate con il modello FEM elastico lineare anziché le distribuzioni calcolate ipotizzando un comportamento plastico della piastra. Dove non indicato esplicitamente la simbologia di questo paragrafo fa riferimento al §6.4 EC2-1-1.

Nel caso di verifica del calcestruzzo senza specifica armatura a taglio è utilizzata la seguente formula, che generalizza le formule (6.47) e (6.49) dell'EC2:

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA MONTECATINI TERME – LUCCA

Sottovia ferroviario – km 40+907 1346-PO-S11-PD-TGSP-28-01-E001

$$v_{Rd} = \max\{ C_{Rd} k (100 \rho f_{ck})^{1/3}; v_{min} \} \cdot \max\{ 2d/a; 1 \} + k_d \sigma_{cp}$$
 (7.9)

Dove: a è la distanza dal pilastro, d è l'altezza utile della piastra.

Nel caso di specifica armatura a taglio la formula di verifica, ottenuta a partire dalla [(6.52) EC2-1-1], e dalla [(6.38) EC2-1-1] è:

$$\beta v_{Ed}/(u_1 d) \le 0.75 v_{Rd,c} + 1.5 (d/s_r) f_{ywd,ef} \sin\alpha A_{sw}/(u_1 d)$$
 (7.10)

Definendo:

u_s il perimetro posto a distanza 0,5d dal pilastro, ossia il primo perimetro di chiodi,

 $\rho_w = A_{sw}/(u_s \cdot s_r) = rapporto geometrico di armatura a taglio perimetro u_s posto a distanza 0,5d,$

 $v_s = \beta V_{Ed}/(u_s d)$ = tensione massima di taglio a distanza 0,5d dal pilastro [(6.38) EC2-2005],

la (5.10) diventa:

$$v_s \le 0.75 v_{Rd,c} + 1.5 \rho_w \sin \alpha f_{ywd,ef}$$

che è la formula di verifica usata.

6.5. Armature

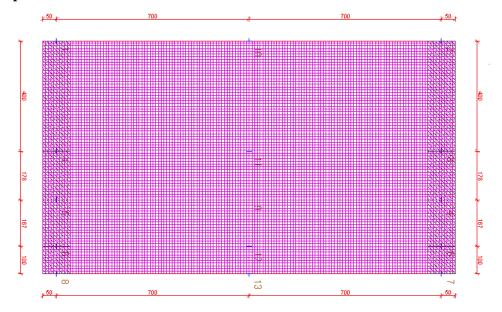
Si riporta di seguito la disposizione delle armature adottare per la verifica della soletta.

Maglie Soletta

							Dir.principale				Dir.secondaria			
Lato	Filo	Piano	Dir.	ΔΧ	ΔΥ	Tipo	Dim.	Ø	Passo	N.tond.	Dim.	Ø	Passo	N.tond.
			Princ.[°]	[m]	[m]		[m]	[mm]	[m]		[m]	[mm]	[m]	
Inf			0	0	0	Fe dritti	00	12	0.1		00	12	0.1	
Sup			0	0	0	Fe dritti	00	12	0.1		00	12	0.1	
Inf	1	1	0	5	7	Fe dritti	10	26	0.08	175	14	12	00	0
Inf	1	1	0	5	7	Fe dritti	10	12	∞	0	14	26	0.08	125
Sup	1	1	0	5	7	Fe dritti	10	26	0.08	188	15	12	00	0
Sup	1	1	0	5	7	Fe dritti	10	12	∞	0	15	26	0.08	125

Armatura Soletta (spessore 100cm)

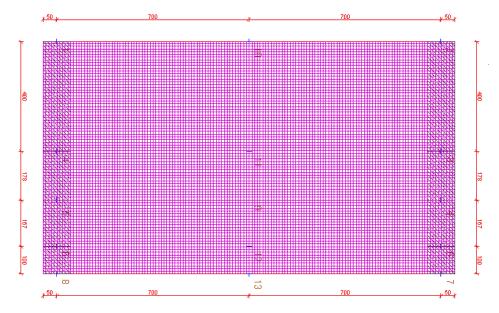
Mandanti



LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA MONTECATINI TERME – LUCCA

Sottovia ferroviario - km 40+907 1346-PO-S11-PD-TGSP-28-01-E001

Armatura superiore



Armatura di pelle antifessurazione d12/10

Armatura principale d26/15 in entrambe le direzioni in primo strato

Armatura principale d26/15 in entrambe le direzioni in secondo strato

Armatura Inferiore

Armatura di pelle antifessurazione d12/10 Armatura principale d26/15 in entrambe le direzioni in primo strato Armatura principale d26/15 in entrambe le direzioni in secondo strato

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA MONTECATINI TERME – LUCCA

Sottovia ferroviario – km 40+907

1346-PO-S11-PD-TGSP-28-01-E001

6.6. Resoconto Verifiche

Verifiche SL shell piastre

	Zona		•		Stati Limite Ultimi					Stati Limite di Esercizio				
N°	Filo	Piano	Fe	Cls	Punt	V/Vrdc	Arm	V/VrdMax	Tot	Verif.	Fess.	Tens.	Tens.	Verif.
					Cls.		Punz.		punz.	SLU		Fe	Cls	SLE
1	2	1	0.422	0.247	-	0.830	-	0.160	0.830	Sì	0.000	0.212	0.165	Sì
1	10	1	0.446	0.293	-	0.438	-	0.069	0.438	Sì	0.168	0.314	0.279	Sì
1	11	1	0.462	0.301	-	0.463	-	0.073	0.463	Sì	0.522	0.321	0.284	Sì
1	3	1	0.387	0.251	-	0.904	-	0.182	0.904	Sì	0.000	0.198	0.170	Sì Sì
1	-	-	0.448	0.292	-	0.967	-	0.174	0.967	Sì	0.167	0.313	0.277	Sì
2	3	1	0.387	0.251	-	0.906	-	0.184	0.906	Sì	0.000	0.199	0.170	Sì
2	11	1	0.469	0.305	-	0.463	-	0.073	0.463	Sì	0.537	0.325	0.287	Sì
2	9	1	0.491	0.317	-	0.995	-	0.184	0.995	Si	0.591	0.341	0.296	Sì
2	14	1	0.385	0.249	-	0.919	-	0.188	0.919	Sì	0.000	0.198	0.171	Sì
2		-	0.484	0.313	-	0.981	-	0.188	0.981	Sì	0.575	0.336	0.293	Sì
3	5	1	0.389	0.242	-	0.915	-	0.180	0.915	Sì	0.000	0.206	0.174	Sì Sì
3	12	1	0.474	0.309	-	0.488	-	0.076	0.488	Sì	0.539	0.325	0.288	Si
3	13	1	0.484	0.314	-	0.463	-	0.073	0.463	Sì	0.561	0.332	0.292	Sì
3	7	1	0.408	0.235	-	0.927	-	0.179	0.927	Sì	0.000	0.235	0.179	Sì
3	-	-	0.478	0.311	-	0.993	-	0.178	0.993	Sì	0.547	0.328	0.289	Sì
4	14	1	0.383	0.248	-	0.919	-	0.191	0.919	Sì	0.000	0.198	0.172	Sì
4	9	1	0.460	0.299	-	0.955	-	0.181	0.995	Si	0.167	0.312	0.276	Sì
4	12	1	0.472	0.308	-	0.487	-	0.076	0.487	Sì	0.534	0.324	0.287	Sì
4	5	1	0.383	0.244	-	0.915	-	0.184	0.915	Sì	0.000	0.202	0.174	Sì
4	-	-	0.474	0.307	-	0.982	-	0.188	0.982	Sì	0.532	0.323	0.285	Sì
5	9	1	0.500	0.317	-	0.995	-	0.199	0.996	Si	0.614	0.344	0.296	Sì
5	15	1	0.308	0.196	-	0.904	-	0.187	0.904	Sì	0.000	0.206	0.178	Sì
5	6 12	1	0.310	0.197 0.310	-	0.900	-	0.181 0.074	0.900	Sì	0.000 0.547	0.207 0.328	0.178 0.288	Sì
5	12	1	0.480		-	0.477 0.965	-	0.074	0.477	Sì	0.547		0.288	Sì
5 6	11	1	0.487 0.470	0.314 0.305	-	0.455	-	0.184	0.965 0.455	Sì Sì	0.562	0.332 0.326	0.292	Sì Sì
6	4	1	0.470	0.303	-	0.455	-	0.071	0.455	Sì	0.000	0.326	0.200	Sì
6	15	1	0.309	0.192	-	0.904	-	0.185	0.904	Sì	0.000	0.206	0.177	Sì
6	9	1	0.309	0.195	-	0.904	-	0.183	0.904	Si	0.614	0.206	0.178	10
6	ð	'	0.489	0.319		0.965	-	0.173	0.965	Sì	0.583	0.343	0.301	Sì Sì
7	10	1	0.468	0.314	-	0.411	-	0.164	0.411	Sì	0.363	0.336	0.280	Sì
7	10	1	0.321	0.233	-	0.814	-	0.003	0.411	Sì	0.000	0.226	0.200	Sì
7	4	1	0.308	0.101	-	0.889	-	0.179	0.889	Sì	0.000	0.206	0.177	Sì
7	11	1	0.462	0.301	_	0.455		0.173	0.455	Sì	0.523	0.200	0.177	Sì
7	- ''	'	0.448	0.292	-	0.455	-	0.071	0.455	Sì	0.168	0.313	0.277	Sì
8	12	1	0.479	0.310	_	0.477		0.074	0.477	Sì	0.550	0.328	0.288	Sì
8	6	1	0.320	0.310		0.900	-	0.074	0.900	Sì	0.000	0.320	0.200	Sî Sî
8	8	1	0.367	0.195	-	0.911	-	0.177	0.911	Sì	0.000	0.240	0.178	Sì
8	13	i	0.486	0.315	_	0.436	_	0.068	0.436	Sì	0.566	0.333	0.102	Sì
8	- 10		0.481	0.312	_	0.436	_	0.174	0.436	Sì	0.555	0.330	0.290	Sì
J	-	-	U.701	0.512	-	0.010	-	0.174	0.010	01	0.000	0.000	0.200	OI.

Legenda tabella verifiche Stati Limite Ultimi e di esercizio shell

- Zona: Nel riportare i risultati delle verifiche effettuate si è diviso la piastra in zone. Per ogni zona e per ogni tipo di verifica sono riportati i coefficienti di verifica normalizzati ad 1. Per ogni zona, tranne che per la centrale, è indicato il filo ed il nodo niù vicino.
- Stati Limite Ultimi : Verifiche agli Stati Limite Ultimi
- Fe: Coefficiente di verifica dell'armatura calcolato come indicato nel §5.6.1 della presente relazione.
- Cls: Coefficiente di verifica a pressoflessione del calcestruzzo per le 4 direzioni principali di compressione.
- Punt.Cls.: Coefficiente di verifica dei puntoni di calcestruzzo calcolato come indicato nelle formule (F.4) e (LL.137-142) EC2-2-2006
- Arm punz : Coefficiente di verifica a punzonamento per piastre dotate di specifica armatura a taglio.
- V/Vrdc: Coefficiente di verifica a punzonamento per piastre non dotate di specifica armatura a taglio.
- V/VrdMax : Coefficiente di verifica ottenuto applicando la (6.53 EC2-2005).
- Tot.Punz. : Coefficiente di verifica totale taglio-punzonamento.
- Verif SLU. Coefficiente totale di verifica Stati Limite Ultimi.
- Stati Limite di Esercizio : Verifiche agli Stati Limite di Esercizio.
- Fessurazione: Coefficiente di verifica stato limite di fessurazione.
- Tens.Fe: Coefficiente di verifica stato limite tensione di esercizio dell'armatura.
- Tens.Cls: Coefficiente di verifica stato limite tensione di esercizio del calcestruzzo.
- Verif SLE. Coefficiente totale di verifica Stati Limite di Esercizio.

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA MONTECATINI TERME – LUCCA

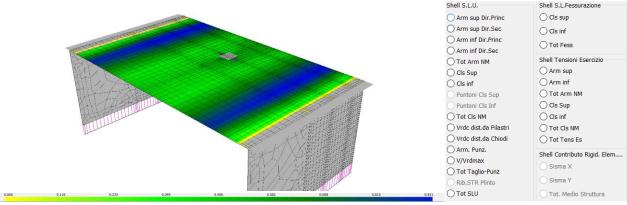

Sottovia ferroviario – km 40+907 1346-PO-S11-PD-TGSP-28-01-E001

Tabella riassuntiva verifiche Stati Limite Shell e Fondazioni

	Pareti			Piastre			Plinti diretti			Plinti su pali			Pali			
Piano	SLU	Tens	Fessur.	Spost	SLU	Tens	Fessur.	SLU	Tens	Fessur.	SLU	Tens	Fessur.	SLU	Tens	Fessur.
		Eserc.				Eserc.			Eserc.			Eserc.			Eserc.	
0																
1					SI	Sì	Sì									

Verifica di resistenza degli elementi strutturali - Valore massimo Ed/Rd allo SLE: 0.61466

- Valore massimo Ed/Rd allo SLU: 0.996
- Verifiche 3D Shell
 Verifiche 3D Shell S.L.U.

7. INCIDENZA ARMATURE

Incidenza			
	Soletta Fe B450C Ø26	320,000	kg/ m³

